

Supported by a grant from Iceland, Liechtenstein and Norway through the EEA Financial Mechanism and the Norwegian Financial Mechanism

Reliability assessment of industrial heritage structures and application to a light-weight steel roof

M. Sykora, M. Holicky, K. Jung, J. Markova Czech Technical University in Prague K. Kvaal, T. Thiis Norwegian University of Life Sciences, Norway

Introduction Importance of protection General aspects of reliability assessment Numerical example Conclusions

A State of the second sec

1st International Conference

Industrial heritage structures M. Sykora et al.

Introduction

• *Industrial heritage* - structures of significant architectural, historic or technological value

SMENT OF HISTORICAL IMMOVABLES www.he

- Part of urban landscape, visual historical landmarks
- 10 000 buildings and bridges in the Czech Republic
- Insufficient attention to recognizing, declaring and protecting gradual extinction
- Re-use and adaptation integration into an urban lifestyle, protection of cities' heritage
- The *contribution* is aimed to:
 - promote *discussion* between civil engineers and architects on the industrial heritage
 - indicate its architectural and cultural significance
 - provide framework for complex reliability assessment

Industrial heritage structures M. Sykora et al.

Importance of protection

• Protection – *multidisciplinary topic* (architectonic, civil engineering, historical and ecological aspects)

• Adaptations and re-use contribute to the sustainable development:

- preservation of the cultural values
- recycling of resources and avoiding wasting energy
- facilitating the economic regeneration.

• Importance increasing due to shortage of energy, economic crisis and environmental protection.

• Initiatives:

- International Committee on the Conservation of the Industrial Heritage *TICCIH*
- Research Centre for Industrial Heritage (CTU in Prague)
- research project Assessment of historical immovables
- Industrial heritage structures M. Sykora et al.

General aspects of the reliability assessment

• Minimisation of construction interventions (respect of the original conception, durability), but sufficient *reliability*

- Social and cultural aspects loss of *cultural* and heritage *values*
- Economic aspects additional costs to increase reliability
- Sustainable development recycling of materials
- Deterministic design procedures conservative (expensive repairs, losses of cultural and heritage value)
- Probabilistic procedures improving the reliability assessment by:
 - better description of *uncertainties*
 - facilitating inclusion of the *results of inspections* and *testing* and satisfactory pas performance

2

3

Industrial heritage structures M. Sykora et al.

Industrial heritage structures

M. Sykora et al.

Probabilistic assessment

$$\rho_{\mathsf{f}}(t_{\mathsf{D}}) = \mathsf{P}\{\mathsf{Z}[\mathsf{X}(t_{\mathsf{D}})] < \mathsf{0}\} \le \rho_{\mathsf{t}}, \quad \beta = -\Phi^{-1}[\rho_{\mathsf{f}}(t_{\mathsf{D}})] \ge \beta_{\mathsf{t}}$$

- Resistance decreasing function, loads stochastic processes
- New information related to structural conditions:
 - inspections, measurements (deterioration, materials, geometry)
 - satisfactory past performance
- Target reliability.
 - ISO 2394 moderate failure consequences, moderate costs of safety measures $\beta_{\rm t}$ = 3.1
 - empirical models $\beta_{\rm t} \approx 2.7$ 3.4
 - minimisation of the total working-life cost (inspections, maintenance, repairs, failure consequences)

Numerical example

- Reliability assessment of the steel roof of a 100-year old industrial heritage building
- \bullet Deterministic verification actual resistance lower by 15 % than required by Eurocodes
- Probabilistic assessment

Variable	Sym.	Dist.	μ_X / x_k	V_X
Resistance	R	LN	1.19	0.08
Perm. load	G	Ν	1	0.05
Snow load (50 years)	S ₅₀	GU	1.11	0.27
Wind action (1 year)	WAPT	GU	0.3	0.5
Resistance uncertainties	$K_R^{(n)}$	LN	1.15	0.05
Load effect uncertainties	K _E	LN	1	0.1

Industrial heritage structures M. Sykora et al.

Reliability analysis

• Limit state function:
$$Z(t) = K_R R - K_E (G + S_{50} + W_{APT})$$

Conclusions

- *Protection* of the industrial heritage contributes to the sustainable development.
- Insufficient attention to recognizing and protecting the industrial heritage may lead to its *extinction*.
- Desired protection requires a *public recognition* of the industrial heritage to be equally important as any other cultural heritage.
- *Educational programs* and relevant *legislation* are needed.

5

Conclusions

• Significant *uncertainties* related to actual structural conditions can hardly be described by simplified design procedures.

• Probabilistic methods allow to better consider uncertainties, results of inspections and tests and satisfactory past performance.

• The *target reliability* might be lower than 3.8 recommended in Eurocodes; it may vary from 2.7 to 3.4 for *moderate consequences*.

• Consideration of the satisfactory past performance may improve the reliability estimates particularly for structures exposed to dominant *permanent actions*.

Supported by a grant from Iceland, Liechtenstein and Norway through the EEA Financial Mechanism and the Norwegian Financial Mechanism

9

A/CZ0046/2/0013 ASSESSMENT OF HISTORICAL IMMOVABLES www.heritage.cvut.cz

M. Sykora et al. Reliability assessment of industrial heritage structures and application to a light-weight steel roof

Thank you for your attention.